文品网 >地图 >总结 >

高中物理必修二知识点

最新高中物理必修二知识点(优选十二篇)

时间:2025-06-14 文品网

总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,让我们好好写一份总结吧。但是却发现不知道该写些什么,以下是小编收集整理的高中物理必修二知识点总结,欢迎阅读,希望大家能够喜欢。

高中物理必修二知识点 篇1

1.万有引力定律:引力常量G=6.67×N?m2/kg2

2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的.距离r小得多时,可以看成质点)

3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)

(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)

(2)重力=万有引力

地面物体的重力加速度:mg=Gg=G≈9.8m/s2

高空物体的重力加速度:mg=Gg=G<9.8m/s2

4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。

由mg=mv2/R或由==7.9km/s

5.开普勒三大定律

6.利用万有引力定律计算天体质量

7.通过万有引力定律和向心力公式计算环绕速度

8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)

高中物理必修二知识点 篇2

一、直线运动

1、质点:用来代替物体的有质量的点。

2、说明:

(1)质点是一个理想化模型,实际上并不存在。

(2)物体可以简化成质点的情况:

①物体各部分的运动情况都相同时(如平动)。

②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。

二、参考系和坐标系

1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。

说明:

(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。

(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。

2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。

三、时刻和时间

1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。如“3s末”;和“4s初”。

2、时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示。

四、位置、位移和路程

1、位置:质点所在空间对应的点。建立坐标系后用坐标来描述。

2、位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度。

3、路程:物体运动轨迹的长度,是标量。

五、速度与速率

1、速度:位移与发生这个位移所用时间的比值(v= ),是矢量,方向与Δx的方向相同。

2、瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量。

3、平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v= ),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量。

说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等。

六、加速度

1、物理意义:描述速度改变快慢及方向的物理量,是矢量。

2、定义:速度的改变量跟发生这一改变所用时间的比值。

3、大小:等于单位时间内速度的改变量。

4、方向:与速度改变量的方向相同。

5、理解:要注意区别速度、速度的`改变、速度的变化率。加速度的大小即,而加速度的方向即Δv的方向

七、速度、速度变化量及加速度有哪些区别?

速度等于位移跟时间的比值。它是位移对时间的变化率,描述物体运动的快慢和运动方向。也可以说是描述物体位置变化的快慢和位置变化的方向。

速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差。它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反。速度的变化与速度大小无必然联系。

加速度是速度的变化与发生这一变化所用时间的比值。也就是速度对时间的变化率,在数值上等于单位时间内速度的变化。它描述的是速度变化的快慢和变化的方向。加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系。

高中物理必修二知识点 篇3

坐标系

1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。

2、坐标系分类:

(1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。

(2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的'坐标为铅球离开手后的水平距离和竖直距离。

(3)三维坐标系(空间直角坐标系):适用于物体在三维空间的运动。例如,篮球在空中的运动。

高中物理必修二知识点 篇4

功和能(功是能量转化的量度)

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的.动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

高中物理必修二知识点 篇5

1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。

2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。

3、利用静电放电产生的'臭氧、无菌消毒等,雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。

4、防止静电的主要途径:

(1)避免产生静电。如在可能情况下选用不容易产生静电的材料。

(2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。

高中物理必修二知识点 篇6

1、磁现象:

磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。

磁体:具有磁性的物体,叫做磁体。

磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;

②来源:天然磁体(磁铁矿石)、人造磁体;

③保持磁性的时间长短:硬磁体(永磁体)、软磁体。

磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。

磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。

磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。

无论磁体被摔碎成几块,每一块都有两个磁极。

磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。

钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。

2、磁场:

磁场:磁体周围的.空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

磁场的基本性质:对放入其中的磁体产生磁力的作用。

磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。

磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:

①磁感线是假想的曲线,本身并不存在;

②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;

③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密;

3、地磁场:

地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。

指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。

地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。

高中物理必修二知识点 篇7

电势的概念

(1)定义及定义式

电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。

(2)电势的单位:伏(V)。

(3)电势是标量。

(4)电势是反映电场能的性质的物理量。

(5)零电势点

规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。

(6)电势具有相对性

电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的.数值则不同。

(7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。

(8)电势能与电势的关系:ε=qU。

高中物理必修二知识点 篇8

一、曲线运动

1、曲线运动位移:平面直角坐标系 通常设置位移方向和x轴角α

2、曲线运动速度:

①在某一点的速度下,沿曲线的切线方向

②平面直角坐标系中的速度可分解为水平速度Vx及竖直速度Vy,V2=Vx2 Vy2

3、曲线运动是变速运动(速度是矢量,任何方向或大小的变化都会导致速度的变化,在曲线运动中,速度的方向必须改变)

4、物体曲线运动的条件:物体的合力方向与其速度方向不在同一直线上

二、平抛运动(曲线运动特例)

1、定义:以一定的速度抛出物体。如果物体只受重力的影响,则此时的运动称为抛体运动,抛体运动开始时的速度称为初始速度。如果初始速度沿水平方向,则称为平抛运动

2、平抛运动速度:①水平方向做匀速直线运动 初速度V0即为Vx保持不变

②垂直方向做自由落体运动 Vy=gt

③合速度:V2=Vx2 Vy2=V02 (gt)2 方向:与X轴的夹角为θ tanθ=Vy/V0=gt/V0

3、平抛运动的位移:①水平方向 X=V0t

②竖直方向y=1/2gt2 ③合位移 S2=x2 y2=(V0t)2 (1/2gt2 )2 方向:与X轴夹角α tanα=y/x=V0t/?gt2=2V0/gt

三、圆周运动

1、线速度V:①圆周运动的速度可以用物体通过的弧长与所需时间的比值来衡量 这个比值是线速 ②V=Δs/Δt 单位:m/s③匀速圆周运动:物体沿圆周运动,线速相等(tips:方向不时变化)

2、角速度ω:①物体进行圆周运动的速度也可以用它与圆心连接的速度来描述,即角速 ② 公式 ω=Δθ/Δt (角度采用弧度制) ω的单位是rad/s

3、转速r:物体单位时间转动的圈数 单位:转每秒或转每分:

4、周期T:做匀速圆周运动的物体需要一周的时间 单位:秒S

5、关系式:V=ωr(r为半径) ω=2π/T

6、向心加速①定义:任何做匀速圆周运动的物体的加速度都指向圆心,称为向心加速度

②表达式 a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指向圆数)方向:指向圆心

7、向心力 F=mV2/r=mω2r=m(4π2/T2)r=4π2f2mr=4π2n2mr 方向:指向圆心

8、生活中的圆周运动

①铁路弯道:

②拱桥:(1)凹形:F向=FN-G 向心加速度的方向垂直向上 (2)凸形:F向=G-FN 向心加速度方向垂直向下

③航天器失重:宇航员得到地球重力和宇宙飞船驾驶舱的支持,共同提供绕地球匀速圆周运动所需的向心力 mg-FN=mv2/R v=√gR时FN=0 宇航员失重

④离心运动(逐渐远离圆心):(1)由于惯性,圆周运动的物体总是沿着切线飞行。当向心力消失或不足时,即离心运动

(2)应用:洗衣机脱水 加工无缝钢管(离心制管技术)

(3)危害:公路弯道不得超速 砂轮高速旋转 飞轮不得超速 否则会导致事故

四、开普勒定律

1、开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳在椭圆的焦点上

2、开普勒第二定律:对于任何行星来说,它在相等的时间内扫过与太阳相等的面积

三、开普勒第三定律:①所有行星轨道的半长轴三次方与其公转周期的二次方相等 ②a—半长轴椭圆轨道 T—公转周期 则 a3/T2=k 对于同一行星,k为常量

五、万有引力定律

1、内容:自然界中的`任何两个物体都相互吸引,重力的方向在它们的连接上,重力的大小和物体的质量m1m2的乘积成正比,与它们之间的距离R的平方成正比

2、公式:F=Gm1m2/r2 G引力常量r的单位为米;m单位为公斤;F的单位为N

3、适用范围:自然界任意两个物体

4、引力常量 G=6、67×10-11N·m2/kg2 卡文迪许(英) 扭秤实验

5、应用①地球质量:(1)不考虑地球自转的影响,地面质量为m的物体的重力mg地球对物体的吸引力等于 即mg=GmM/R2 M=gR2/G R为地球半径 M为地球质量

②计算天体质量:将M设置为一天体质量 r 轨道半径是围绕星体的轨道半径 T为环绕周期

万有引力充当向心力 GMm/r2=(m4π2/T2)r 得出M=4π2r3/GT2

6、宇宙航行:①第一宇宙速度:物体在地面附近以均匀的速度圆周运动 7、9KM/s(超过这个速度,离开地球。最大环绕速度,最小发射速度)

②第二宇宙速度:太阳系: 11、2KM/s

③第三宇宙速度:脱离太阳系 17、9KM/s

7、经典力学有局限性:适用于低速宏观

六、能量

1、势能:相互作用的能量(弹性势能、重力势能)取决于其位置。

2、动能:物体因运动而具有的能量

七、功(W)

1、物体工作条件:①力 ②位移发生在力的方向上

2、公式:W=FLcosα F—力 L—位移 α—力与位移的夹角

3、单位: 焦耳 J 1J=1N·m 标量

4、正功与负功 ①α=π/2 不做功 ②α<π/2 正功 ③π/2 <α<=π 负功

5、当一个物体在几个力的共同作用下发生位移时,这些力对物体的总功率相当于每个力对物体的代数和。

八、功率(P)

1、定义:工作的速度

2、公式: P=W/t=Fv 单位 瓦特 简称瓦 符号:W 1W=1J/s

九、重力势能(Ep)1、定义:物体因举升而具有的能量

2、表达式:Ep=mgh

3、重力工作(WG):当物体运动时,重力只与其起点和终点的位置有关,而与物体运动的路径无关 WG =mgh1-mgh2=Ep1-Ep2 重力势能增加,重力做负功;重力势能减少,重力做正功

4、重力势能的相对性:物体的重力势能总是相对于某个水平面,称为参考平面。在参考平面上,物体的重力势能为零。

5、势能是系统共有的

十、弹性势能:由于弹性的相互作用,弹性变形物体的各个部分之间也有势能。这种势能称为弹性势能

十一、动能定理

1、动能表达式:Ek=1/2mv2

2、动能定理:

①内容:力在一个过程中对物体的作用等于物体在这个过程中动能的变化

②表达式:W=Ek2-Ek1 (W指外力所做的工作)

 十二、机械能守恒定律

在只有重力或弹性才能工作的物体系统中,动能和势能可以相互转机械能可以保持不变

十三、能量守恒定律不会凭空产生或消失。它只能从一种形式转变为另一种形式,或从一个物体转移到其他物体。在转换或转移过程中,总能量保持不变。

高中物理必修二知识点 篇9

棱锥

棱锥的定义:一个表面是多边形的,另一个表面是公共顶点的三角形。这些几何形被称为棱锥

棱锥的性质:

(1)边缘交点。侧面是三角形。

(2)平行于底部的截面与底部的多边形相似。其面积比等于截得棱锥与远棱锥高比的平方

正棱锥

正棱锥的定义:如果一个棱锥的底面是正多边形在底面的射影是底面的中心,则称为正棱锥。

正棱锥的性质:

(1)各侧棱交于一点,相等,各侧均为等腰三角形。各等腰三角形底边高度相等,称为正棱锥斜高。

(3)多个特殊的.直角三角形

esp:

a、相邻两侧边缘垂直的正三棱锥,顶点在底部的射影可以通过三垂线定理为底部三角形的垂心。

b、四面体中有三对异面直线。如果两对垂直,第三对可以垂直。底部顶部的射影是底部三角形的垂心。

高中物理必修二知识点 篇10

1、受力分析:

要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:

(1)确定研究对象,并隔离出来。

(2)先画重力,然后弹力、摩擦力,再画电、磁场力。

(3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力。

(4)合力或分力不能重复列为物体所受的力。

2、整体法和隔离体法

(1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

(2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。

(3)方法选择

所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用。当涉及的物理问题是物体间的.作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

3、注意事项:

正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:

(1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力。

(2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的同时应只画物体的受力,不能把对象对其它物体的施力也画进去。

易错现象:

1、不能正确判定弹力和摩擦力的有无。

2、不能灵活选取研究对象。

3、受力分析时受力与施力分不清。

怎么才能学好物理

1、改变观念

和高中物理相比,初中物理知识相对来说还是比较浅显易懂的,并且内容也不算是很多,也更容易掌握一些。但是能学好初中物理,不见得就能学好高中物理了。如果对于学习物理的兴趣没有培养起来,再加上没有好的学习方法,学习高中物理简直就是难上加难。所以想要学好高中物理,首先就需要改变观念,应该对自己有个正确的认识,从头开始。

2、培养对物理的兴趣

兴趣是最好的老师,想要学好高中物理就要对物理这门学科充满兴趣。那么,怎么培养学习物理的兴趣呢?物理是一门和生活紧密相关的学科,理科生应该在平时的时候多注意物理与日常生活、生产和现代科技密切联系,息息相关的地方。甚至是将物理知识应用到实际生活中去,这样可以大大的激发学习物理的兴趣。

欧姆表测电阻知识点

(1)电路组成

(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

高中物理必修二知识点 篇11

电源和电流

1、电流产生的条件:

(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)

(2)导体两端存在电势差(电压)

(3)导体中存在持续电流的条件:是保持导体两端的电势差。

2、电流的方向

电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。

说明:

(1)负电荷沿某一方向运动和等量的.正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移动方向相反。

(2)电流有方向但电流强度不是矢量。

(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。

高中物理必修二知识点 篇12

一。力学中的物理学史知识点

1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。

2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。

3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。

4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67×11-11n·m2/kg2(微小形变放大思想)。

5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。

二。热学中的物理学史

1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比,即为玻意耳定律。

3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比,即为查理定律。

4、1802年法国物理学家盖·吕萨克发现:一定质量的'气体在压强不变时,它的体积与热力学温度成正比,即为盖·吕萨克定律。

三。电、磁学中的物理学史

1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。

2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。

3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。

4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。

5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。

6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。

7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。

本文来源:http://www.324p.com/zongjie/5266.html